2009 AACR Annual Meeting April 18-22, 2009 Denver, CO

Print this Page for Your Records

Close Window

Abstract Number:	969
Session Title:	Chemoprevention Studies 2
Presentation Title:	Resveratrol and muscadine grape extract reduce radiation-induced bone marrow PU.1 gene loss and chromosome aberration frequency
Presentation Start/End Time:	Sunday, Apr 19, 2009, 1:00 PM - 5:00 PM
Location:	Hall B-F, Poster Section 2
Poster Section:	2
Poster Board Number:	19
Author Block:	Ronald E. Carsten, Annette M. Bachand, Susan M. Bailey, Phuong N.

Le, Robert L. Ullrich. Colorado State University, Fort Collins, CO The purpose of this study was to 1) investigate if resveratrol (trans-3,5,4'-trihydroxystilbene) or a muscadine grape extract (MGE) containing resveratrol could reduce the frequency of radiationinduced PU.1 gene loss, 2) determine the optimal dose of resveratrol as a single agent for reducing radiation-induced chromosome aberration frequencies, and 3) determine the optimal MGE resveratrol dose for reducing radiation-induced chromosome aberrations in mouse bone marrow cells. Male CBA/CaJ mice, 9-10 weeks old, were divided into groups for the following treatments: 1) no treatment, 2) resveratrol only 3) MGE only, 4) radiation only, 5) resveratrol initiated before radiation (Res+RAD), 6) MGE started before radiation (MGE+RAD), and 7) resveratrol started 2 hours or 2 days after radiation (RAD>Res 2hrs or RAD>Res 2 days+). Irradiated mice received a 3-Gy dose of whole body gamma-radiation. The Res+RAD group received resveratrol (100 mg/kg) daily by gavage for 2 days prior to radiation exposure, with the third resveratrol dose administered 30 minutes before irradiation. Resveratrol administration continued mixed in the drinking water at a daily dose of 100 mg/kg. The MGE+RAD group received the MGE consistent with a total trans-resveratrol dose of 5.73 µg/kg by gavage for 2 days prior to irradiation as for Res+RAD. For the RAD>Res 2hrs, resveratrol (100 mg/kg) was a single dose 2 hours after irradiation and for RAD>Res 2 day+, resveratrol (100 mg/kg) was initiated 2 days after irradiation and continued. Bone marrow from groups of 5 mice was collected at 1 and 30 days post-irradiation and processed for fluorescent in-situ hybridization (FISH) PU.1 detection. Slides were blinded and 100 cells per mouse were scored. For the dose response studies, groups of 10 mice received doses of 5.75µg/kg and 1.50, 3.12, 6.25, 25, 50, or 100 mg/kg of resveratrol as a single agent or 0.9, 2.10, 5.73, 7.13, or 10.70 µg/kg of total trans-resveratrol in the MGE given for 2 days prior to irradiation. Bone marrow was harvested at 1 day and processed for cytogenetic evaluation with a total of 250 cells scored. Resveratrol and MGE initiated before irradiation and resveratrol started after irradiation significantly (p<0.0001) reduced PU.1 gene loss at 1 and 30 days. The optimum dose range of resveratrol for reducing chromosome aberrations was 3.12-25 mg/kg and for the MGE it was 2.10-7.13 µg/kg. These results demonstrate that resveratrol alone, or as found in combination with other bioactive factors in MGE is capable of significantly reducing radiation-induced PU.1 gene loss. The µg/kg doses of MGE resveratrol are superior to resveratrol alone in mg/kg or equivalent µg/kg doses of resveratrol as a single agent. Reduction of PU.1 gene loss and chromosome aberration frequencies in irradiated bone marrow cells suggests that resveratrol and MGE may protect against development of radiation-induced acute myeloid leukemia.

2009 AACR Annual Meeting April 18-22, 2009 Denver, CO

Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 100th Annual Meeting of the American Association for Cancer Research; 2009 Apr 18-22; Denver, CO. Philadelphia (PA): AACR; 2009. Abstract nr {Abstract number}

OASIS - Online Abstract Submission and Invitation System[™] ©1996-2009, Coe-Truman Technologies, Inc.